THE POSTAGE STAMP PROBLEM: AN ALGORITHM TO DETERMINE THE h-RANGE ON THE h-RANGE FORMULA ON THE EXTREMAL BASIS PROBLEM FOR $k=4$

SVEIN MOSSIGE

Abstract. Given an integral "stamp" basis A_{k} with $1=a_{1}<a_{2}<\ldots<$ a_{k} and a positive integer h, we define the h-range $n\left(h, A_{k}\right)$ as
$n\left(h, A_{k}\right)=\max \left\{N \in \mathbf{N} \mid n \leq N \Longrightarrow n=\sum_{1}^{k} x_{i} a_{i}, \sum_{1}^{k} x_{i} \leq h, n, x_{i} \in \mathbf{N}_{0}\right\}$.
$\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$. For given h and k, the extremal basis A_{k}^{*} has the largest possible extremal h-range

$$
n(h, k)=n\left(h, A_{k}^{*}\right)=\max _{A_{k}} n\left(h, A_{k}\right) .
$$

We give an algorithm to determine the h-range. We prove some properties of the h-range formula, and we conjecture its form for the extremal h-range. We consider parameter bases $A_{k}=A_{k}(h)$, where the basis elements a_{i} are given functions of h. For $k=4$ we conjecture the extremal parameter bases for $h \geq 11385$.

1. Background

Given an integral basis $A_{k}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with $a_{1}=1<a_{2}<\ldots<a_{k}$ and a positive integer h, we define the h-range $n\left(h, A_{k}\right)$ as

$$
n\left(h, A_{k}\right)=\max \left\{N \in \mathbf{N} \mid n \leq N \Longrightarrow n=\sum_{1}^{k} x_{i} a_{i}, \sum_{1}^{k} x_{i} \leq h, n, x_{i} \in \mathbf{N}_{0}\right\}
$$

$\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$. The integer $n \in \mathbf{N}$ has an h-representation by A_{k} if

$$
n=\sum_{1}^{k} x_{i} a_{i} \mid \quad \sum_{1}^{k} x_{i} \leq h, \quad x_{i} \in \mathbf{N}_{0}
$$

We consider only bases A_{k} which are h-admissible, that is,

$$
a_{k} \leq n\left(h, A_{k}\right) .
$$

For given h and k, the extremal basis A_{k}^{*} has the largest possible extremal h-range

$$
n(h, k)=n\left(h, A_{k}^{*}\right)=\max _{A_{k}} n\left(h, A_{k}\right)
$$

A popular interpretation arises if we consider the integers a_{i} as stamp denominations and h as the "size of the envelope." More information about the "postage
stamp problem" can be found in E. S. Selmer's comprehensive research monograph [17]. Here we mainly use Selmer's notation and presentation.

In the beginning, the main interest was centered around the global aspect, to find an extremal basis A_{k}^{*} with extremal h-range. The "local" aspect is: Determine $n\left(h, A_{k}\right)$ when h, k and a particular basis A_{k} are given.

In the global case, a convenient approach is to keep k fixed and let h increase, asking for asymptotic values of the extremal h-range $n(h, k)$. We can also ask for asymptotic values of "local" h-ranges $n\left(h, A_{k}\right)=n\left(h, A_{k}(h)\right)$, when the basis elements a_{i} are given functions of h. We shall call such bases $A_{k}(h)$ parameter bases.

Let φ be the prefactor defined by

$$
\begin{equation*}
n\left(h, A_{k}(h)\right)=\varphi\left(\frac{h}{k}\right)^{k}(1+\mathrm{o}(1)) . \tag{1}
\end{equation*}
$$

Both the local and the global problems are trivial for $k=2$, Stöhr [20]. The extremal bases A_{3}^{*} were determined by Hofmeister [4], [5]. For $k \geq 4$, our knowledge is much more limited. The best known general upper bound is due to Rødseth [15]:

$$
n(h, k) \leq \frac{(k-1)^{k-2}}{(k-2)!}\left(\frac{h}{k}\right)^{k}+\mathcal{O}\left(h^{k-1}\right) .
$$

For $k=4$, the prefactor $\varphi=4.5$ is far too large, and Kirfel [7] has the strongest published result:

$$
n(h, 4) \leq 2.35\left(\frac{h}{4}\right)^{4}+\mathcal{O}\left(h^{3}\right)
$$

In [12] the author proved the lower bound

$$
n(h, 4) \geq 2.008\left(\frac{h}{4}\right)^{4}+\mathcal{O}\left(h^{3}\right)
$$

The proof consists in determining a parameter basis $A_{4}=A_{4}(h)$ whose h-range equals the bound given. However (May 1991, unpublished), Kirfel and the author have shown that the lower bound 2.008... (more decimals in (32)) is really sharp. Hence, it is natural to investigate the local extremal parameter bases for $k=4$.

For $k=5$, Kolsdorf in [6] has given a parameter basis with asymptotic h-range $3.06(h / 5)^{5}$.

It was shown by Kirfel [8] that the limit

$$
\begin{equation*}
c_{k}=\lim _{h \rightarrow \infty} n(h, k) /(h / k)^{k} \tag{2}
\end{equation*}
$$

really exists for all $k \geq 2$. It is known that $c_{2}=1, c_{3}=4 / 3$, and $c_{4}=2.008 \ldots$.
Looking for the extremal bases, we consider parameter bases $A_{k}(h)$ for which

$$
\begin{equation*}
n\left(h, A_{k}(h)\right) \text { has order of magnitude } h^{k} . \tag{3}
\end{equation*}
$$

For the basis elements, this implies that $a_{i}(h)$ has order of magnitude $h^{i-1}, i=$ $2,3, \ldots, k$.

Representations and gain. The regular representation of n by A_{k},

$$
\begin{equation*}
n=\sum_{1}^{k} e_{i} a_{i} \tag{4}
\end{equation*}
$$

satisfies the conditions

$$
\begin{equation*}
e_{1}+e_{2} a_{2}+\ldots+e_{j} a_{j}<a_{j+1}, \quad j=1,2, \ldots, k-1 \tag{5}
\end{equation*}
$$

A representation of n is minimal if the number of addends is the smallest possible among all representations. For the elements $a_{i} \in A_{k}, i=2,3, \ldots, k$, we write

$$
\begin{equation*}
a_{i}=\gamma_{i-1} a_{i-1}-\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j} \tag{6}
\end{equation*}
$$

where $\gamma_{i-1}=\left\lceil a_{i} / a_{i-1}\right\rceil \geq 2$, and $\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}=\gamma_{i-1} a_{i-1}-a_{i}$ is the regular representation by A_{i-2}. As usual, $\lceil x\rceil$ denotes the smallest integer $\geq x \in \mathbf{R}$. Hofmeister [5] calls (6) the normal form of the basis A_{k}. Let $n \in \mathbf{N}$ have a regular representation (4) by A_{k}, and let $s_{i} \in \mathbf{Z}, i=2,3, \ldots, k$. From (6) we get a new representation $n=\sum z_{j} a_{j}$ by an $\left(s_{2}, s_{3}, \ldots, s_{k}\right)$-transfer:

$$
\begin{align*}
n & =\sum_{i=1}^{k} e_{i} a_{i}+\sum_{i=2}^{k} s_{i}\left(\gamma_{i-1} a_{i-1}-a_{i}-\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}\right) \\
& =\sum_{j=1}^{k}\left(e_{j}-s_{j}+s_{j+1} \gamma_{j}-\sum_{i=j+2}^{k} s_{i} \beta_{j}^{(i)}\right) a_{j}=\sum_{j=1}^{k} z_{j} a_{j} \tag{7}
\end{align*}
$$

with $s_{1}=s_{k+1}=\gamma_{k}=0$. We say that the transfer is possible if $z_{j} \geq 0, j=$ $1, \ldots, k$.

The sum of the reductions in the coefficients is the gain $G\left(s_{2}, s_{3}, \ldots, s_{k}\right)$ in the transfer:

$$
\begin{equation*}
G\left(s_{2}, s_{3}, \ldots, s_{k}\right)=\sum_{j=1}^{k}\left(e_{j}-z_{j}\right) . \tag{8}
\end{equation*}
$$

The usefulness of such transfers stems from the following result of Hofmeister [5]: Every "legal" representation $n=\sum z_{i} a_{i}\left(z_{i} \geq 0\right)$ can be obtained from the regular representation by a suitable ($s_{2}, s_{3}, \ldots, s_{k}$)-transfer with all $s_{i} \geq 0$. We also cite another result of Hofmeister [5]: If a parameter basis $A_{k}(h)$ satisfies (3) and is expressed in normal form (6), then the s_{i} of any possible ($s_{2}, s_{3}, \ldots, s_{k}$)-transfer are bounded as $h \rightarrow \infty$. See also Kirfel [7].

In 1963, Hofmeister [5], [3] gave formulas for the regular h-range of a basis. If only regular h-representations are allowed, we get the regular h-range. He also conjectured the formula for the extremal regular h-range, later proved by Mrose [14].

Let

$$
h_{0}=h_{0}\left(A_{k}\right)=\min \left\{h \in \mathbf{N} \mid a_{k} \leq n\left(h, A_{k}\right)\right\} .
$$

For all k and $h \geq h_{0}$ we trivially have

$$
\begin{equation*}
n\left(h+1, A_{k}\right) \geq n\left(h, A_{k}\right)+a_{k} . \tag{9}
\end{equation*}
$$

Furthermore, Selmer [17] proved that, for arbitrary k and $h \geq h_{0}$,

$$
\begin{equation*}
n\left(h, A_{k}\right) \geq(h+1) a_{k-1}-a_{k} \tag{10}
\end{equation*}
$$

implies

$$
\begin{equation*}
n\left(h+1, A_{k}\right)=n\left(h, A_{k}\right)+a_{k} . \tag{11}
\end{equation*}
$$

If h is increased by 1 , the right-hand side of (10) increases with a_{k-1}, while the left-hand side increases with at least a_{k}. There is consequently an $h_{1}\left(\geq h_{0}\right)$ such that (10) and hence (11) are satisfied for all $h \geq h_{1}$. This means that for given $h, h \geq h_{1}$, we have

$$
\begin{equation*}
n\left(h, A_{k}\right)=n\left(h_{1}, A_{k}\right)+\left(h-h_{1}\right) a_{k} . \tag{12}
\end{equation*}
$$

We see that for a basis A_{k} there may be different h-range formulas according to the value of $h, h_{0} \leq h \leq h_{1}$. From (12), the h-range formula is the same for all $h \geq h_{1}$. In looking for bases with large h-range, we often have the same h-range formula for all $h \geq h_{0}$.
Lemma 1. Let the basis A_{k} and the possible transfers $T^{(i)}=\left(s_{2}^{(i)}, s_{3}^{(i)}, \ldots, s_{k}^{(i)}\right)$, $i=1,2, \ldots, \eta$, be given. Let

$$
h_{2}=\min \left\{h \mid n\left(h, A_{k}\right) \geq \max _{i}\left\{s_{k}^{(i)}\right\} a_{k}\right\}
$$

Then for $h \geq h_{2}$

$$
n\left(h, A_{k}\right)=n\left(h_{2}, A_{k}\right)+\left(h-h_{2}\right) a_{k} .
$$

Proof. The minimal representation of a positive integer is independent of the value of h. For $h \geq h_{2}$ we can use all the transfers. From above we know that for $h \geq h_{1}$ the h-range is determined by (12) and we have $h_{1} \leq h_{2}$. Note that only the transfers actually used determine h_{2}.

2. The h-Range algorithm

In the literature we find more or less general h-range algorithms by Lunnon [9], Riddell and Chan [16], Mossige [10], and Challis [2].

Let the basis A_{4} and the possible transfers be given. For each integer $n \in$ [$\left.1, n\left(h, A_{4}\right)\right]$ given in a regular representation $\sum e_{j} a_{j}$, we use the possible transfer with the largest gain to give the minimal representation of $n, \sum z_{j} a_{j}$. It satisfies the inequality $\sum e_{j}-$ gain $=\sum z_{j} \leq h$. The algorithm gives sufficient such inequalities that express the conditions that all the integers n have an h-representation. The least integer n with $n+1$ not having an h-representation is the h-range. For a given basis, the algorithm determines h_{0} and from which $h \geq h_{0}$ the h-range formula is the same. The result is valid for all $h \geq h_{0}$.

We give the algorithm for $k=4$, but it may be generalized to $k>4$.
Now, let the possible transfers $T^{(i)}=\left(s_{2}^{(i)}, s_{3}^{(i)}, s_{4}^{(i)}\right), i=1, \ldots, \eta$, for the basis A_{4} be given. Then the minimal representation of an integer $n>0$ is independent of h.

The upper bounds for the e_{j} 's are given such that the representation (4) is regular. The conditions for the transfers to be possible give lower bounds for the e_{j} 's. The coefficients z_{j} of (7) must be ≥ 0, giving lower bounds on the e_{j} 's. The gain (reduction of coefficient sum) must be positive.

We get the following values of the gain and the lower bounds for e_{j} 's:

$$
\begin{align*}
G_{i}= & s_{2}^{(i)}\left(-\gamma_{1}+1\right)+s_{3}^{(i)}\left(\beta_{1}^{(3)}-\gamma_{2}+1\right) \tag{13}\\
& +s_{4}^{(i)}\left(\beta_{1}^{(4)}+\beta_{2}^{(4)}-\gamma_{3}+1\right) \geq 1,
\end{align*}
$$

$$
\begin{align*}
& e_{1} \geq-s_{2}^{(i)} \gamma_{1}+s_{3}^{(i)} \beta_{1}^{(3)}+s_{4}^{(i)} \beta_{1}^{(4)}=L_{i}^{\prime}, \\
& e_{2} \geq s_{2}^{(i)}-s_{3}^{(i)} \gamma_{2}+s_{4}^{(i)} \beta_{2}^{(4)}=M_{i}^{\prime}, \\
& e_{3} \geq s_{3}^{(i)}-s_{4}^{(i)} \gamma_{3}=N_{i}^{\prime} \tag{14}\\
& e_{4} \geq s_{4}^{(i)}=Q_{i} .
\end{align*}
$$

We may, however, find L_{i}^{\prime} and/or M_{i}^{\prime} and/or $N_{i}^{\prime}<0$, and operate instead with lower bounds

$$
e_{1} \geq L_{i}=\max \left\{0, L_{i}^{\prime}\right\}, e_{2} \geq M_{i}=\max \left\{0, M_{i}^{\prime}\right\}, e_{3} \geq N_{i}=\max \left\{0, N_{i}^{\prime}\right\}
$$

There may be repetitions among the L_{i}, M_{i}, N_{i}, or Q_{i}. We sort them first without repetitions:

$$
\begin{aligned}
& 0=L_{0}<L_{1}<\ldots<L_{r_{1}}<L_{r_{1}+1}=U_{1}+1 \\
& 0=M_{0}<M_{1}<\ldots<M_{r_{2}}<M_{r_{2}+1}=U_{2}+1 \\
& 0=N_{0}<N_{1}<\ldots<N_{r_{3}}<N_{r_{3}+1}=U_{3}+1 \\
& 0=Q_{0}<Q_{1}<\ldots<Q_{r_{4}}<Q_{r_{4}+1}=U_{4}+1 .
\end{aligned}
$$

The numbers $L_{0}, L_{r_{1}+1}$, and so forth, are added. Here $L_{0}=M_{0}=N_{0}=Q_{0}=$ $G_{0}=0$ corresponds to using the regular representation itself, hence no transfer. The upper bounds for e_{j}, say $U_{j}, j=1,2,3$, are given such that the representation (4) is regular. For e_{4} we note that the largest $s_{4}^{(i)}$ is $<h$, and we put $U_{4}=h$. Then we sort all the gains G_{i},

$$
G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(\eta)}>0
$$

without registering possible equalities. This gives a sequence of quintuples

$$
\left(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)}\right), \quad i=1,2, \ldots, \eta
$$

to which we add $(0,0,0,0,0)$, corresponding to no transfer. Assume that p, q, r and s are given such that

$$
\begin{equation*}
0 \leq p \leq r_{1}, \quad 0 \leq q \leq r_{2}, \quad 0 \leq r \leq r_{3}, \quad 0 \leq s \leq r_{4} . \tag{15}
\end{equation*}
$$

Let e_{1}, e_{2}, e_{3} and e_{4} be given such that

$$
\begin{gather*}
L_{p} \leq e_{1} \leq L_{p+1}-1, M_{q} \leq e_{2} \leq M_{q+1}-1 \tag{16}\\
N_{r} \leq e_{3} \leq N_{r+1}-1, Q_{s} \leq e_{4} \leq Q_{s+1}-1 \tag{17}
\end{gather*}
$$

We then scan the quintuples $\left(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)}\right), i=1,2, \ldots, \eta+1$, and register the first time (largest gain) such that

$$
L^{(i)}<L_{p+1}, \quad M^{(i)}<M_{q+1}, \quad N^{(i)}<N_{r+1}, \quad Q^{(i)}<Q_{s+1}
$$

The corresponding gain $G^{(i)}=G_{p q r s}$ is then the largest one which can be used in the case (16), (17). We must always have

$$
e_{1}+e_{2}+e_{3}+e_{4}-G^{(i)} \leq h
$$

In the "worst" case $e_{1}=L_{p+1}-1, e_{2}=M_{q+1}-1, e_{3}=N_{r+1}-1$, and the corresponding integer n has the regular representation

$$
\begin{equation*}
n=L_{p+1}-1+\left(M_{q+1}-1\right) a_{2}+\left(N_{r+1}-1\right) a_{3}+e_{4}^{\prime} a_{4} \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
L_{p+1}-1+M_{q+1}-1+N_{r+1}-1+e_{4}^{\prime}-G_{p q r s} \leq h \tag{19}
\end{equation*}
$$

If $Q_{s+1}<U_{4}+1$, then $e_{4}^{\prime}=Q_{s+1}-1$, and we must have

$$
\begin{equation*}
L_{p+1}-1+M_{q+1}-1+N_{r+1}-1+Q_{s+1}-1-G_{p q r s} \leq h . \tag{20}
\end{equation*}
$$

The inequality defines a lower bound for h. If $Q_{s+1}=U_{4}+1$, then

$$
\begin{equation*}
e_{4}^{\prime}=h-\left(L_{p+1}-1+M_{q+1}-1+N_{r+1}-1-G_{p q r s}\right) \tag{21}
\end{equation*}
$$

gives an upper bound for e_{4}^{\prime}.
Each subset with $Q_{s+1}=U_{4}+1$ determines a value e_{4}^{\prime} such that all values $n=\sum e_{j} a_{j}$ satisfying (16), (17) have h-representations, and the value

$$
\begin{equation*}
n^{\prime}=L_{p+1}-1+\left(M_{q+1}-1\right) a_{2}+\left(N_{r+1}-1\right) a_{3}+\left(e_{4}^{\prime}+1\right) a_{4} \tag{22}
\end{equation*}
$$

does not, but all other values

$$
m^{\prime}=e_{1}+e_{2} a_{2}+e_{3} a_{3}+\left(e_{4}^{\prime}+1\right) a_{4}
$$

where e_{1}, e_{2}, e_{3} satisfy (16), (17), do. Let

$$
\begin{equation*}
m=\min _{p q r}\left\{n^{\prime}\right\} \tag{23}
\end{equation*}
$$

then m has no h-representation, but all values less than m do, so the h-range $n\left(h, A_{k}\right)=m-1$.

If $Q_{s+1}<U_{4}+1$, then $e_{4}^{\prime}=Q_{s+1}-1 \geq 0$, and the inequality (20) defines a lower bound for h. Then h_{0} is the minimal value of h that satisfies the inequalities (20) in all the cases with $e_{4}^{\prime}=Q_{s+1}-1=0$. Let h_{3} be the minimal value of h such that all the inequalities (20) are satisfied. Then for $h \geq h_{3}$ the h-range $n\left(h, A_{4}\right) \geq \max _{i}\left\{s_{4}^{(i)}\right\} a_{4}$, with the index running over all used transfers. From Lemma 1 , the basis has the same h-range formula for all $h \geq h_{3}$. If $h_{3}>h_{0}$ and $h_{0} \leq h \leq h_{3}$, then the h-range is $m-1$, (23).

For given $h \geq h_{3}$, the upper bound on e_{4}^{\prime} is

$$
\begin{equation*}
h-\max \left(L_{p+1}-1+M_{q+1}-1+N_{r+1}-1-G_{p q r s}\right), \tag{24}
\end{equation*}
$$

where the maximum is taken over all the cases with $Q_{s+1}=U_{4}+1$, see (21). One may also use e_{4}^{\prime} to determine the prefactor of the basis; see [12] and Selmer [19].

Let $h \geq h_{3}$. The integers $n \in\left[0, h a_{4}\right]$ given in regular representation with an h-representation may be split into disjoint sets. For each set of integers we perform the procedure above. Let N be the smallest one of the integers $m-1$, (23) with $Q_{s+1}=U_{4}+1$. Since we have used the possible transfer with the largest gain for each integer, N is the h-range of the basis.

The algorithm may be easily modified for a parameter basis $A_{4}(h)$ where γ, β, G, L, M, N and U are either linear expressions in h of the form $c h+d$ or constants. This means that the comparisons may have to be done in two steps. Let $L_{1}=c_{1} h+d_{1}$ and $L_{2}=c_{2} h+d_{2}$. Then if $c_{1} \neq c_{2}$ we are finished with one comparison. If $c_{1}=c_{2}$ we have to compare d_{1} with d_{2} also.

We have described a constructive procedure to determine the h-range of a given explicit basis A_{4} or a parameter basis $A_{4}(h)$ with a given set of transfers.

In [12] the author used the algorithm for $k=4$ to determine the h-range formulas of the parameter basis that by optimization gave the asymptotic prefactor c_{4}. Also it contributes to the characterization of the h-range formulas.

The algorithm requires that all the subsets (16), (17) must be considered in turn. A slightly different approach might reduce the number of subsets which need to be considered.

First, choose $Q_{s} \leq e_{4} \leq Q_{s+1}-1$. Now extract from the set of quintuples $\left(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)}\right)$ just those which satisfy $Q^{(i)}<Q_{s+1}$. We do not need to consider other transfers, because they are not possible for these values of e_{4}. This set of quintuples defines new subdivisions for e_{3}, and there will in general be fewer subdivisions than before. Next, we choose one of these subdivisions $N_{r} \leq e_{3} \leq N_{r+1}-1$, and repeat the process. Finally, when we have chosen subdivisions for e_{4}, e_{3}, e_{2} and e_{1} we will have a set of quintuples that describes precisely those transfers which are possible for the subset, and so we have only to choose the one with highest gain.

Properties of the h-range formula. Since Hofmeister [5] gave explicit formulas for the regular h-range of a basis, we assume that at least one transfer must be applied.

Theorem 1. Let $h, k \geq 3$, and let the admissible basis A_{k} be given in normal form (6). Let $\sum_{1}^{k} \epsilon_{i} a_{i}=n\left(h, A_{k}\right), \epsilon_{i} \in \mathbf{N} \cup\{0\}$, be the regular representation of the h-range. Let us assume $\epsilon_{1}<a_{2}-2$. Then

$$
\epsilon_{1}=\sum_{i=3}^{k} s_{i} \beta_{1}^{(i)}-s_{2} \gamma_{1}-2
$$

where $\left(s_{2}, \ldots, s_{k}\right)$ is one of the transfers used for A_{k}. For this transfer to be possible for an integer with regular representation $\sum e_{j} a_{j}$, it is at least necessary that

$$
e_{1} \geq \sum_{i=3}^{k} s_{i} \beta_{1}^{(i)}-s_{2} \gamma_{1}
$$

Proof. Let $n\left(h, A_{k}\right)=N$. The integer $N+1$ has no h-representation. Consider the integer $N+2=\sum \epsilon_{i} a_{i}+2$. Since the basis is admissible, we have one coefficient $\epsilon_{j} \geq 1, j \in[2, k]$. Then the integer

$$
M=N+2-a_{j}=\epsilon_{1}+2+\sum_{2}^{j-1} \epsilon_{i} a_{i}+\left(\epsilon_{j}-1\right) a_{j}+\sum_{j+1}^{k} \epsilon_{i} a_{i}=\sum_{1}^{k} z_{i}^{\prime} a_{i}
$$

and the representation is regular with $\sum_{1}^{k} z_{i}^{\prime}>h . M$ has an h-representation

$$
M=\sum_{1}^{k} z_{i} a_{i} \text { with } \sum_{1}^{k} z_{i} \leq h, \text { since } M \leq N .
$$

If $\left(s_{2}, \ldots, s_{k}\right)$ is the transfer between the two representations for M, we have at least one $s_{j}>0, j \in[2, k]$. The h-representation of M can not be used for $M-1$, since $N+1=M-1+a_{j}$ would then have an h-representation. Hence the representation of M must have $z_{1}=0$, and thus from (7) (with e_{j} replaced by z_{j}^{\prime})

$$
0=z_{1}^{\prime}-0+s_{2} \gamma_{1}-\sum_{3}^{k} s_{i} \beta_{1}^{(i)}=\epsilon_{1}+2+s_{2} \gamma_{1}-\sum_{3}^{k} s_{i} \beta_{1}^{(i)} .
$$

From the h-range algorithm and Theorem 1 we have
Theorem 2. Let $k=4, h \geq 3$, and let the admissible basis A_{4} be given in normal form (6) with $\gamma_{2} \geq 3, \beta_{2}^{(4)} \geq 1$ and $2 a_{2}>\beta_{1}^{(3)}+\beta_{1}^{(4)}>a_{2}$. Let the used transfers
of the basis be $T^{(j)}=\left(s_{2}^{(j)}, s_{3}^{(j)}, s_{4}^{(j)}\right), j=1, \ldots, \eta$. Let the regular representation of the h-range of the basis be

$$
\begin{equation*}
n=\epsilon_{1}+\epsilon_{2} a_{2}+\ldots+\epsilon_{4} a_{4} . \tag{25}
\end{equation*}
$$

Then

$$
\begin{gathered}
\epsilon_{1}=\left\{\begin{array}{l}
\sum_{i=3}^{4} s_{i}^{\left(j_{1}\right)} \beta_{1}^{(i)}-s_{2}^{\left(j_{1}\right)} \gamma_{1}-2, \\
\gamma_{1}-2, \\
\epsilon_{2}=\left\{\begin{array}{l}
s_{4}^{\left(j_{2}\right)} \beta_{2}^{(4)}-s_{3}^{\left(j_{2}\right)} \gamma_{2}+s_{2}-1, \\
\gamma_{2}-\beta_{2}^{(4)}-2-\delta, \\
\gamma_{2}-1-\delta,
\end{array}\right. \\
\epsilon_{3}=\left\{\begin{array}{l}
s_{3}^{\left(j_{3}\right)}-s_{4}^{\left(j_{3}\right)} \gamma_{3}-1, \\
\gamma_{3}-1-\delta,
\end{array}\right. \\
\epsilon_{4}=h-\sum_{i=1}^{3} \epsilon_{i}+g,
\end{array}\right.
\end{gathered}
$$

where g is the gain of the possible transfer of n with the largest gain. For at most one value of $l \in\{2,3\}$ we have $\epsilon_{l}=\gamma_{l}-1$. Here $\delta=0$ or $\delta=1, j_{1}, j_{2}, j_{3} \in\{1,2, \ldots, \eta\}$.

Proof. From the h-range algorithm we have that the values of ϵ_{l} are given by either the conditions for the transfers to be possible or the conditions for n to be in regular representation, [12]. In the algorithm we may have $p=r_{1}$, giving $L_{r_{1}+1}=\gamma_{1}$ and, from (23), $\epsilon_{1}=\gamma_{1}-2$. If $p<r_{1}$ we find ϵ_{1} from the algorithm or Theorem 1. The possible transfer of n with the largest gain and with the conditions on the e_{j} such that we can have $e_{j} \leq \epsilon_{j}, j=1,2,3$, gives the gain $g \geq 0$. If no possible transfer for n exists, then $g=0$.

Conjecture 1. For $k \geq 3$, there exist an $h_{s} \in \mathbf{N}$, a set of transfers $T^{(j)}=$ $\left(s_{2}^{(j)}, \ldots, s_{k}^{(j)}\right), j=1, \ldots, \eta$, and a $\sigma \in[1, \eta]$ such that for $h>h_{s}$ we have the extremal parameter basis $A_{k}^{*}(h)$ given in normal form (6) uses the transfers $T^{(j)}, j=1, \ldots, \eta$. If the regular representation of the h-range of the basis is

$$
n=\epsilon_{1}+\epsilon_{2} a_{2}+\ldots+\epsilon_{k} a_{k},
$$

then

$$
\begin{gathered}
\epsilon_{1}=\sum_{i=3}^{k} s_{i}^{(\sigma)} \beta_{1}^{(i)}-s_{2}^{(\sigma)} \gamma_{1}-2, \\
\epsilon_{l}=\gamma_{l}-2
\end{gathered}
$$

for $l=2,3, \ldots, k-1$, and

$$
\epsilon_{k}=h-\sum_{i=1}^{k-1} \epsilon_{i}+g,
$$

where g is the gain of the possible transfer of n with the largest gain.
Also from a numerical point of view the conjecture is quite interesting, to find a upper bound for a given basis.

For $k=3, h>22$, the (0,1)-transfer with the condition $e_{1} \geq \beta_{1}^{(3)}=\beta$, see (7), is the only transfer used for the A_{3}^{*} basis, Hofmeister [4]. But with $\epsilon_{1}=\beta-2$, we cannot apply it on $n(h, 3)$. Hence, the extremal h-range $n(h, 3)$ is a minimal regular h-representation. The extremal bases for $k=3$ and $h \geq 6$ have $\epsilon_{2}=\gamma_{2}-2$.

All the known extremal bases for $k=4$ are determined numerically and have for $h \geq 43$ and 23 other values, $6 \leq h<42, \epsilon_{2}=\gamma_{2}-2$ and $\epsilon_{3}=\gamma_{3}-2$. See Challis [2], Mossige [10] and [11].

3. The conjecture in the case $k=4$

Let $k=4, h=12 \alpha t+i, i \in[0,11], \alpha \geq 1, \alpha \in \mathbf{Q}, t \in \mathbf{N}$. The parameter basis $A_{M}=A_{M}(h, b, p)$ we are going to use in normal form is ($a_{1}=1$)

$$
\begin{aligned}
a_{2} & =9 \alpha t+b_{1} t+p_{1} \\
a_{3} & =\left(3 \alpha t+b_{3} t+p_{3}\right) a_{2}-\left(5 \alpha t+b_{2} t+p_{2}\right) \\
a_{4} & =\left(2 \alpha t+b_{6} t+p_{6}\right) a_{3}-\left(\alpha t+b_{5} t+p_{5}\right) a_{2}-\left(6 \alpha t+b_{4} t+p_{4}\right)
\end{aligned}
$$

where $b_{l}, p_{l} \in \mathbf{Z}$ (to be chosen suitablely) and where we put $b=\left(b_{1}, b_{2}, \ldots, b_{6}\right)$ and $p=\left(p_{1}, p_{2}, \ldots, p_{6}\right)$. We shall also consider the basis $A_{S}=A_{S}(h, b, p)$, given by replacing the coefficient 5 in (26) by 7 and the coefficient 6 by 4 . Let $A_{M}=A_{M}(h, b)$ be the basis (26) with $p=(0, \ldots, 0)$, and similarly, $A_{S}=A_{S}(h, b)$.

Since 1971, the "record" prefactor $\varphi=2$ was held by the parameter basis $A_{M}(h, b)$ discovered by Hofmeister and Schell [5] with

$$
\begin{equation*}
b=(0,0, \ldots, 0), \quad \alpha=1 \tag{27}
\end{equation*}
$$

and the transfers that give a positive gain

$$
\begin{equation*}
T_{1}=(0,1,0), \quad T_{2}=(0,0,1), \quad T_{3}=(1,1,2), \quad T_{4}=(1,0,2) . \tag{28}
\end{equation*}
$$

In 1988 Braunschädel [1] gave the basis A_{S} with (27), using the transfers

$$
\begin{equation*}
T_{1}, T_{2}, T_{3}, T_{4}^{\prime}=(0,0,2) \tag{29}
\end{equation*}
$$

He examined (on a computer) all bases $A_{4}(h)$ of the form,

$$
\begin{equation*}
h=H t ; a_{2}=c_{1} t, a_{3}=c_{2} t a_{2}-c_{3} t, a_{4}=c_{4} t a_{3}-c_{5} t a_{2}-c_{6} t \tag{30}
\end{equation*}
$$

with $c_{l} \in \mathbf{N}$, allowing only $\left(s_{2}, s_{3}, s_{4}\right)$-transfers with $s_{2}, s_{3}, s_{4} \leq 2$. He then always found $\varphi \leq 2$, and $\varphi=2$ only for the bases $A_{M}(h, b)$ and $A_{S}(h, b)$ with (27) (see also Selmer [19]).

The author's idea was to make small variations of the leading coefficients of the elements of the basis (26), by varying b around the six-tuple $(0, \ldots, 0)$, to see whether an increase of the prefactor is possible. Let

$$
\begin{equation*}
b_{M}=(15,1,-15,6,-13,-20) \tag{31}
\end{equation*}
$$

In 1985 he found a basis $A_{M}\left(h, b_{M}\right)$ with $\varphi>2$ (see [12]):
To get the prefactor φ of this basis we consider the polynomial

$$
g(\gamma)=-32 \gamma-168 \gamma^{2}-22 \gamma^{3}+3 \gamma^{4}
$$

and determine the solution γ_{1} of $g^{\prime}\left(\gamma_{1}\right)=0$, where

$$
\begin{gathered}
\gamma_{1}=\frac{11}{6}+\frac{1}{3} \sqrt{457} \cos \frac{\xi+4 \pi}{3}, \cos \xi=\frac{7163}{\sqrt{457^{3}}}, \text { with } 0<\xi<\pi / 2 \\
\text { giving } \gamma_{1}=-0.09712372 \ldots
\end{gathered}
$$

With this γ_{1} we put $\alpha_{1}=-20 / \gamma_{1}$ and

$$
\begin{equation*}
\sigma=2+3^{-1} 2^{-6} g\left(\gamma_{1}\right)=2.0080397 \ldots \tag{32}
\end{equation*}
$$

For given $\varepsilon>0$ we can choose t so large that for $h=12\left\lfloor\alpha_{1} t\right\rfloor$ the basis $A_{M}\left(h, b_{M}\right)$ has the prefactor

$$
\varphi>\sigma-\varepsilon
$$

In fact, here σ is a cubic irrationality, and can only be approximated by "rational" bases (26). We obtain a very good approximation if we put $\alpha=206$, that is, $h=2472 t$, giving σ of (32) with all seven decimals correct. As usual, $\lfloor x\rfloor$ denotes the largest integer $\leq x \in \mathbf{R}$.

In [11] we developed formulas for the possible h-ranges of the parameter bases $A_{M}(h, b, p)$, and based the optimization on the determination of the local h-range $n\left(h, A_{M}\right)$. In addition to the transfers (28), we discovered that it was possible to use

$$
\begin{equation*}
T_{5}=(1,2,1), \quad T_{6}=(1,0,3) \tag{33}
\end{equation*}
$$

In spite of the very small improvement on $\varphi=2$, this result gave quite a new situation. Let

$$
\begin{equation*}
b_{S}=(15,-1,-15,2,-13,-20) \tag{34}
\end{equation*}
$$

In 1988 Selmer [19] showed that also the basis $A_{S}\left(h, b_{S}\right)$ has the prefactor (32). In [13] we show that my cited result (31), (32) for the basis $A_{M}\left(h, b_{M}\right)$ is valid also for the basis $A_{S}\left(h, b_{S}\right)$ with b_{M} replaced by b_{S}. Selmer [18] calls the two bases an associate pair of bases.

Computational results. When we apply our h-range algorithm to the parameter bases $A_{M},(26)$ and A_{S}, it gives for each basis the sufficient inequalities that express the conditions that all the integers $n \in[1, n(h, A)]$ have an h-representation and it gives all the h-range formula candidates. By extensive computations for $h \leq 620000$ we came to two constructions of two bases. For details see [13].

Construction 1. Given $h=12 \alpha t+i \geq 1236$, where $\alpha \in \mathbf{Q}, t \in \mathbf{N}$ and $0 \leq i \leq 11$. Let $b_{M}=(15,1,-15,6,-13,-20)$. Let $P_{i}=\left(p_{1}, p_{2}, \ldots, p_{6}\right)$ and r be given by Table 1. Let $\beta=\alpha t=\lfloor h / 12\rfloor, i=h-\lfloor h / 12\rfloor 12$ and $q=r+i$. The basis $A(t)$ has the elements ($a_{1}=1$)

$$
\begin{aligned}
& a_{2}=9 \beta+15 t+p_{1} \\
& a_{3}=\left(3 \beta-15 t+p_{3}\right) a_{2}-\left(5 \beta+t+p_{2}\right) \\
& a_{4}=\left(2 \beta-20 t+p_{6}\right) a_{3}-\left(\beta-13 t+p_{5}\right) a_{2},-\left(6 \beta+6 t+p_{4}\right),
\end{aligned}
$$

and h-range formula

$$
\begin{aligned}
n(t)= & (3 \beta+45 t+q+1) a_{4}+\left(2 \beta-20 t+p_{6}-2\right) a_{3} \\
& +\left(3 \beta-15 t+p_{3}-2\right) a_{2}+5 \beta+t+p_{2}-2 .
\end{aligned}
$$

Let $j=\left\lfloor\beta / \alpha_{1}\right\rfloor$, where α_{1} is given in the cited result (31), (32). If $i=0$ then put $j=\left\lfloor\beta / \alpha_{1}\right\rfloor+1$. If $n(j+1)>n(j)$ then $t=j+1$, else $t=j$.

Then the basis $A_{M}^{*}=A_{M}\left(h, b_{M}, P_{i}\right)=A(t)$ has h-range

$$
n\left(h, A_{M}^{*}\right)=n(t)
$$

For i even, $h-h_{0}=1$. For i odd, $h-h_{0}=0$.
Construction 2. Given $h=12 \alpha t+i \geq 1236$, where $\alpha \in \mathbf{Q}, t \in \mathbf{N}$ and $0 \leq i \leq 11$. Let $b_{S}=(15,-1,-15,2,-13,-20)$. Let $P_{i}=\left(p_{1}, p_{2}, \ldots, p_{6}\right)$ and r be given by

Table 1

i	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	r
0	-8	0	10	-3	7	13	-25
1,2	-4	1	8	-1	5	10	-19
3,4	0	2	6	1	3	7	-13
5,6	4	3	4	3	1	4	-7
7,8	8	4	2	5	-1	1	-1
9,10	12	5	0	7	-3	-2	5
11	16	6	-2	9	-5	-5	11

TABLE 2

i	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	r
0	-12	1	14	-1	11	19	-38
1,2	-8	2	12	0	9	16	-32
3,4	-4	3	10	1	7	13	-26
5,6	0	4	8	2	5	10	-20
7,8	4	5	6	3	3	7	-14
9,10	8	6	4	4	1	4	-8
11	12	7	2	5	-1	1	-2

Table 2. Let $\beta=\alpha t=\lfloor h / 12\rfloor, i=h-\lfloor h / 12\rfloor 12$ and $q=r+i$. The basis $A(t)$ has the elements ($a_{1}=1$)

$$
\begin{aligned}
& a_{2}=9 \beta+15 t+p_{1}, \\
& a_{3}=\left(3 \beta-15 t+p_{3}\right) a_{2}-\left(7 \beta-t+p_{2}\right), \\
& a_{4}=\left(2 \beta-20 t+p_{6}\right) a_{3}-\left(\beta-13 t+p_{5}\right) a_{2},-\left(4 \beta+2 t+p_{4}\right),
\end{aligned}
$$

and h-range formula

$$
\begin{aligned}
n(t)= & (3 \beta+45 t+q+1) a_{4}+\left(2 \beta-20 t+p_{6}-2\right) a_{3} \\
& +\left(3 \beta-15 t+p_{3}-2\right) a_{2}+4 \beta+2 t+p_{4}-2 .
\end{aligned}
$$

Let $j=\left\lfloor\beta / \alpha_{1}\right\rfloor$, where α_{1} is given in the cited result (31), (32). If $i \leq 4$, then put $j=\left\lfloor\beta / \alpha_{1}\right\rfloor+1$. If $n(j+1)>n(j)$, then $t=j+1$, else $t=j$.

Then the basis $A_{S}^{*}=A_{S}\left(h, b_{S}, P_{i}\right)=A(t)$ has h-range

$$
n\left(h, A_{S}^{*}\right)=n(t) .
$$

For i even, $h-h_{0}=1$. For i odd, $h-h_{0}=0$.
Two parameter bases $A^{(1)}(h)$ and $A^{(2)}(h)$ is said to be asymptotically equal if $a_{j}^{(1)} / a_{j}^{(2)} \rightarrow 1$ when $h \rightarrow \infty$ for $2 \leq j \leq 4$.

In an unpublished work from 1991, Kirfel and the author have shown the following result. For $h \rightarrow \infty$, all the bases $A=A(h)$ with prefactor $\varphi>2.008$ are either asymptotically equal to $A_{M}\left(h, b_{M}\right)$ or equal to $A_{S}\left(h, b_{S}\right)$. The sets b_{M} and b_{S} are given in (31) and (34) respectively. In [12] it is shown that such bases exist.

Let $\mathcal{A}_{M}\left(h, b_{S}\right)$ denote the class of all bases $A=A(h)$ that are asymptotically equal to $A_{M}\left(h, b_{M}\right)$, and let $\mathcal{A}_{S}\left(h, b_{S}\right)$ be the similar class for $A_{S}\left(h, b_{S}\right)$.

We now ask for the best choice of the basis $A=A(h)$ in the class $\mathcal{A}_{M}\left(h, b_{M}\right)$ and the best choice of the basis in $\mathcal{A}_{S}\left(h, b_{S}\right)$.

Extensive computations for $h \leq 620000$ give the following results.
Result A. For $9793 \leq h \leq 620000, A_{M}^{*}=A_{M}(h)$ in the class $\mathcal{A}_{M}\left(h, b_{M}\right)$ is the basis with the largest h-range.
Result B. For $10653 \leq h \leq 620000, A_{S}^{*}=A_{S}(h)$ in the class $\mathcal{A}_{S}\left(h, b_{S}\right)$ is the basis with the largest h-range.
Result C. For $11385 \leq h \leq 620000, A_{M}^{*}$ has larger h-range than A_{S}^{*}.
For both the bases A_{M}^{*} and A_{S}^{*} the h-range formulas are of the type stated in Conjecture 1.
Conjecture 2. For $h \geq 11385, A_{M}^{*}=A_{M}(h)$ is the extremal basis.
For $h<11385$ we may get better bases when we replace the set b_{M} or b_{S} by other sets b and suitable sets p.

Using a result of Selmer [18], we prove in [13] that if $b=\left(b_{1}, \ldots, b_{6}\right)$ and

$$
b^{\prime}=\left(b_{1}, b_{1}-b_{2}+b_{3}, b_{3}, b_{1}-b_{4}-b_{5}+b_{6}, b_{5}, b_{6}\right)
$$

then for each basis $A_{M}(h, b)$ with prefactor φ there is a basis $A_{S}\left(h, b^{\prime}\right)$ with the same prefactor, and vice versa. If $b=b^{\prime}$, then

$$
2 b_{2}=b_{1}+b_{3}, \quad 2 b_{4}=b_{1}-b_{5}+b_{6} .
$$

For further details see [13].

References

[1] R. Braunschädel, Zum Reichweitenproblem, Diplomarbeit, Math. Inst., Joh. GutenbergUniv., Mainz 1988.
[2] M.F.Challis, Two new techniques for computing extremal h-bases A_{k}, Computer J. 36 (1993), 117-126.
[3] G. Hofmeister, Über eine Menge von Abschnittbasen, J. Reine Angew. Math. 213 (1963) 43-57. MR 31:149
[4] G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. Reine Angew. Math. 232 (1968) 77-101. MR 38:1068
[5] G. Hofmeister, Zum Reichweitenproblem, Mainzer Seminarberichte in Additiven Zahlentheorie, 1 (1983), 30-52.
[6] G. Hofmeister, C. Kirfel and H. Kolsdorf, Extremale Reichweiten, Inst. Rep. No 60, Dept. of pure Math., Univ. of Bergen, 1991.
[7] C. Kirfel, On Extremal Bases for the h-range Problem, I, II, Inst. Rep. Nos. 53, 55, Dept. of pure Math., Univ. of Bergen, 1989, 1990.
[8] C. Kirfel, Extremale asymptotische Reichweitenbasen, Acta Arith. (1992) 279-288. MR 92m:11012
[9] W.F. Lunnon, A Postage Stamp Problem, Compt. J. 12 (1969), 377-380. MR 40:6745
[10] S. Mossige, Algorithms for computing the h-range of the Postage Stamp Problem, Math. Comp., 36 (1981), 575-582. MR 82e:11095
[11] S. Mossige, On the extremal h-range of the Postage Stamp Problem with four Stamp denominations, Dissertation, Inst. Rep. No. 41, Dept. of pure Math., Univ. of Bergen, 1986.
[12] S. Mossige, On extremal h-bases A_{4}, Math. Scand. 61 (1987), 5-16. MR 89e:11008
[13] S. Mossige, The Postage Stamp Problem. An algorithm to determine the h-range. On the h-range formula. On the extremal basis problem for $k=4$, Inst. Rep. No. xx, Dept. of pure Math., Univ. of Bergen, 1995, 1-74.
[14] A. Mrose, Die Bestimmung der extremalen regulären Abschnittbasen mit Hilfe einer Klasse von Kettenbruchdeterminanten, Dissertation, Freie Universität Berlin, 1969.
[15] \emptyset. Rødseth, An upper bound for the h-range of the Postage Stamp Problem, Acta Arith. 54 (1990), 301-306. MR 91h:11013
[16] J. Riddell and C. Chan, Some extremal 2-bases, Math. Comp. 32(1978), 630-634. MR 57:16244
[17] E.S. Selmer, The Local Postage Stamp Problem, I-III, Inst. Rep. Nos. 42, 44, 47, Dept. of Pure Math., Univ. of Bergen, 1986, 1990.
[18] E.S. Selmer, Associate Bases in the Postage Stamp Problem, J. Number Theory, 42, 3,(1992), 320-336. MR 94b:11012
[19] E.S. Selmer, Asymptotic h-ranges and dual bases, Inst. Rep. No. 56, Dept. of Pure Math., Univ. of Bergen, 1990.
[20] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, I, J. Reine Angew. Math. 194 (1955), 40-65. MR 17:713a

University of Bergen, Department of Mathematics, Joh. Brunsgt. 12, N-5008 Bergen, NORWAY

E-mail address: svein.mossige@mi.uib.no

