THE POSTAGE STAMP PROBLEM: AN ALGORITHM TO DETERMINE THE *h*-RANGE ON THE *h*-RANGE FORMULA ON THE EXTREMAL BASIS PROBLEM FOR k = 4

SVEIN MOSSIGE

ABSTRACT. Given an integral "stamp" basis A_k with $1 = a_1 < a_2 < \ldots < a_k$ and a positive integer h, we define the *h*-range $n(h, A_k)$ as

$$n(h, A_k) = \max\{N \in \mathbf{N} \mid n \le N \Longrightarrow n = \sum_1^k x_i a_i, \sum_1^k x_i \le h, n, x_i \in \mathbf{N}_0\}.$$

 $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$. For given h and k, the extremal basis A_k^* has the largest possible extremal h-range

$$n(h,k) = n(h,A_k^*) = \max_{A_k} n(h,A_k).$$

We give an algorithm to determine the *h*-range. We prove some properties of the *h*-range formula, and we conjecture its form for the extremal *h*-range. We consider *parameter bases* $A_k = A_k(h)$, where the basis elements a_i are given functions of *h*. For k = 4 we conjecture the extremal parameter bases for $h \ge 11385$.

1. BACKGROUND

Given an integral basis $A_k = \{a_1, a_2, \ldots, a_k\}$ with $a_1 = 1 < a_2 < \ldots < a_k$ and a positive integer h, we define the h-range $n(h, A_k)$ as

$$n(h, A_k) = \max\{N \in \mathbf{N} \mid n \le N \Longrightarrow n = \sum_{i=1}^{k} x_i a_i, \sum_{i=1}^{k} x_i \le h, \ n, \ x_i \in \mathbf{N}_0\}.$$

 $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$. The integer $n \in \mathbf{N}$ has an *h*-representation by A_k if

$$n=\sum_1^k x_i a_i \mid \sum_1^k x_i \leq h, \ x_i \in \mathbf{N}_0.$$

We consider only bases A_k which are *h*-admissible, that is,

$$a_k \leq n(h, A_k).$$

For given h and k, the extremal basis A_k^* has the largest possible extremal h-range

$$n(h,k) = n(h, A_k^*) = \max_{A_k} n(h, A_k).$$

A popular interpretation arises if we consider the integers a_i as stamp denominations and h as the "size of the envelope." More information about the "postage

Received by the editor March 13, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11B13, 11D85.

stamp problem" can be found in E. S. Selmer's comprehensive research monograph [17]. Here we mainly use Selmer's notation and presentation.

In the beginning, the main interest was centered around the global aspect, to find an *extremal basis* A_k^* with extremal *h*-range. The "local" aspect is: Determine $n(h, A_k)$ when h, k and a particular basis A_k are given.

In the global case, a convenient approach is to keep k fixed and let h increase, asking for asymptotic values of the extremal h-range n(h, k). We can also ask for asymptotic values of "local" h-ranges $n(h, A_k) = n(h, A_k(h))$, when the basis elements a_i are given functions of h. We shall call such bases $A_k(h)$ parameter bases.

Let φ be the *prefactor* defined by

(1)
$$n(h, A_k(h)) = \varphi(\frac{h}{k})^k (1 + o(1)).$$

Both the local and the global problems are trivial for k = 2, Stöhr [20]. The extremal bases A_3^* were determined by Hofmeister [4], [5]. For $k \ge 4$, our knowledge is much more limited. The best known general upper bound is due to Rødseth [15]:

$$n(h,k) \leq rac{(k-1)^{k-2}}{(k-2)!} (rac{h}{k})^k + \mathcal{O}(h^{k-1}).$$

For k = 4, the prefactor $\varphi = 4.5$ is far too large, and Kirfel [7] has the strongest published result:

$$n(h,4)\leq 2.35\left(rac{h}{4}
ight)^4+\mathcal{O}(h^3).$$

In [12] the author proved the lower bound

$$n(h,4) \geq 2.008 \left(rac{h}{4}
ight)^4 + \mathcal{O}(h^3).$$

The proof consists in determining a parameter basis $A_4 = A_4(h)$ whose *h*-range equals the bound given. However (May 1991, unpublished), Kirfel and the author have shown that the lower bound 2.008... (more decimals in (32)) is really *sharp*. Hence, it is natural to investigate the local extremal parameter bases for k = 4.

For k = 5, Kolsdorf in [6] has given a parameter basis with asymptotic *h*-range $3.06(h/5)^5$.

It was shown by Kirfel [8] that the limit

(2)
$$c_k = \lim_{h \to \infty} n(h,k) / (h/k)^k$$

really exists for all $k \ge 2$. It is known that $c_2 = 1$, $c_3 = 4/3$, and $c_4 = 2.008...$

Looking for the extremal bases, we consider parameter bases $A_k(h)$ for which

(3)
$$n(h, A_k(h))$$
 has order of magnitude h^k .

For the basis elements, this implies that $a_i(h)$ has order of magnitude h^{i-1} , $i = 2, 3, \ldots, k$.

Representations and gain. The regular representation of n by A_k ,

(4)
$$n = \sum_{1}^{k} e_i a_i,$$

satisfies the conditions

(5)
$$e_1 + e_2 a_2 + \ldots + e_j a_j < a_{j+1}, \quad j = 1, 2, \ldots, k-1.$$

A representation of n is minimal if the number of addends is the smallest possible among all representations. For the elements $a_i \in A_k$, i = 2, 3, ..., k, we write

(6)
$$a_i = \gamma_{i-1} a_{i-1} - \sum_{j=1}^{i-2} \beta_j^{(i)} a_j,$$

where $\gamma_{i-1} = \lceil a_i/a_{i-1} \rceil \geq 2$, and $\sum_{j=1}^{i-2} \beta_j^{(i)} a_j = \gamma_{i-1}a_{i-1} - a_i$ is the regular representation by A_{i-2} . As usual, $\lceil x \rceil$ denotes the smallest integer $\geq x \in \mathbf{R}$. Hofmeister [5] calls (6) the normal form of the basis A_k . Let $n \in \mathbf{N}$ have a regular representation (4) by A_k , and let $s_i \in \mathbf{Z}, i = 2, 3, \ldots, k$. From (6) we get a new representation $n = \sum z_j a_j$ by an (s_2, s_3, \ldots, s_k) -transfer:

(7)
$$n = \sum_{i=1}^{k} e_{i}a_{i} + \sum_{i=2}^{k} s_{i} \left(\gamma_{i-1}a_{i-1} - a_{i} - \sum_{j=1}^{i-2} \beta_{j}^{(i)}a_{j} \right)$$
$$= \sum_{j=1}^{k} \left(e_{j} - s_{j} + s_{j+1}\gamma_{j} - \sum_{i=j+2}^{k} s_{i}\beta_{j}^{(i)} \right) a_{j} = \sum_{j=1}^{k} z_{j}a_{j}$$

with $s_1 = s_{k+1} = \gamma_k = 0$. We say that the transfer is possible if $z_j \ge 0$, $j = 1, \ldots, k$.

The sum of the reductions in the coefficients is the gain $G(s_2, s_3, \ldots, s_k)$ in the transfer:

(8)
$$G(s_2, s_3, \dots, s_k) = \sum_{j=1}^k (e_j - z_j).$$

The usefulness of such transfers stems from the following result of Hofmeister [5]: Every "legal" representation $n = \sum z_i a_i$ $(z_i \ge 0)$ can be obtained from the regular representation by a suitable (s_2, s_3, \ldots, s_k) -transfer with all $s_i \ge 0$. We also cite another result of Hofmeister [5]: If a parameter basis $A_k(h)$ satisfies (3) and is expressed in normal form (6), then the s_i of any possible (s_2, s_3, \ldots, s_k) -transfer are bounded as $h \to \infty$. See also Kirfel [7].

In 1963, Hofmeister [5], [3] gave formulas for the *regular* h-range of a basis. If only regular h-representations are allowed, we get the regular h-range. He also conjectured the formula for the extremal regular h-range, later proved by Mrose [14].

Let

$$h_0 = h_0(A_k) = \min\{h \in \mathbf{N} \mid a_k \le n(h, A_k)\}.$$

For all k and $h \ge h_0$ we trivially have

(9)
$$n(h+1,A_k) \ge n(h,A_k) + a_k.$$

Furthermore, Selmer [17] proved that, for arbitrary k and $h \ge h_0$,

(10)
$$n(h, A_k) \ge (h+1)a_{k-1} - a_k$$

implies

(11)
$$n(h+1, A_k) = n(h, A_k) + a_k.$$

If h is increased by 1, the right-hand side of (10) increases with a_{k-1} , while the left-hand side increases with at least a_k . There is consequently an $h_1 (\geq h_0)$ such that (10) and hence (11) are satisfied for all $h \geq h_1$. This means that for given $h, h \geq h_1$, we have

(12)
$$n(h, A_k) = n(h_1, A_k) + (h - h_1)a_k.$$

We see that for a basis A_k there may be different *h*-range formulas according to the value of $h, h_0 \leq h \leq h_1$. From (12), the *h*-range formula is the same for all $h \geq h_1$. In looking for bases with large *h*-range, we often have the same *h*-range formula for all $h \geq h_0$.

Lemma 1. Let the basis A_k and the possible transfers $T^{(i)} = (s_2^{(i)}, s_3^{(i)}, \ldots, s_k^{(i)}), i = 1, 2, \ldots, \eta$, be given. Let

$$h_2 = \min\{h|n(h,A_k) \geq \max_i \{s_k^{(i)}\}a_k\}.$$

Then for $h \geq h_2$

$$n(h, A_k) = n(h_2, A_k) + (h - h_2)a_k$$

Proof. The minimal representation of a positive integer is independent of the value of h. For $h \ge h_2$ we can use all the transfers. From above we know that for $h \ge h_1$ the h-range is determined by (12) and we have $h_1 \le h_2$. Note that only the transfers actually used determine h_2 .

2. The h-range algorithm

In the literature we find more or less general h-range algorithms by Lunnon [9], Riddell and Chan [16], Mossige [10], and Challis [2].

Let the basis A_4 and the possible transfers be given. For each integer $n \in [1, n(h, A_4)]$ given in a regular representation $\sum e_j a_j$, we use the possible transfer with the largest gain to give the minimal representation of n, $\sum z_j a_j$. It satisfies the inequality $\sum e_j - gain = \sum z_j \leq h$. The algorithm gives sufficient such inequalities that express the conditions that all the integers n have an h-representation. The least integer n with n+1 not having an h-representation is the h-range. For a given basis, the algorithm determines h_0 and from which $h \geq h_0$ the h-range formula is the same. The result is valid for all $h \geq h_0$.

We give the algorithm for k = 4, but it may be generalized to k > 4.

Now, let the possible transfers $T^{(i)} = (s_2^{(i)}, s_3^{(i)}, s_4^{(i)}), i = 1, ..., \eta$, for the basis A_4 be given. Then the minimal representation of an integer n > 0 is independent of h.

The upper bounds for the e_j 's are given such that the representation (4) is regular. The conditions for the transfers to be possible give lower bounds for the e_j 's. The coefficients z_j of (7) must be ≥ 0 , giving lower bounds on the e_j 's. The gain (reduction of coefficient sum) must be positive.

We get the following values of the gain and the lower bounds for e_i 's:

(13)
$$G_i = s_2^{(i)}(-\gamma_1 + 1) + s_3^{(i)}(\beta_1^{(3)} - \gamma_2 + 1) \\ + s_4^{(i)}(\beta_1^{(4)} + \beta_2^{(4)} - \gamma_3 + 1) \ge 1,$$

(14)

$$e_{1} \geq -s_{2}^{(i)}\gamma_{1} + s_{3}^{(i)}\beta_{1}^{(3)} + s_{4}^{(i)}\beta_{1}^{(4)} = L'_{i},$$

$$e_{2} \geq s_{2}^{(i)} - s_{3}^{(i)}\gamma_{2} + s_{4}^{(i)}\beta_{2}^{(4)} = M'_{i},$$

$$e_{3} \geq s_{3}^{(i)} - s_{4}^{(i)}\gamma_{3} = N'_{i},$$

$$e_{4} \geq s_{4}^{(i)} = Q_{i}.$$

We may, however, find $L_i^{'}$ and/or $M_i^{'}$ and/or $N_i^{'}<0,$ and operate instead with lower bounds

$$e_1 \ge L_i = \max\{0, L_i^{'}\}, \ e_2 \ge M_i = \max\{0, M_i^{'}\}, \ e_3 \ge N_i = \max\{0, N_i^{'}\}.$$

There may be repetitions among the L_i , M_i , N_i , or Q_i . We sort them first without repetitions:

$$0 = L_0 < L_1 < \dots < L_{r_1} < L_{r_1+1} = U_1 + 1$$

$$0 = M_0 < M_1 < \dots < M_{r_2} < M_{r_2+1} = U_2 + 1$$

$$0 = N_0 < N_1 < \dots < N_{r_3} < N_{r_3+1} = U_3 + 1$$

$$0 = Q_0 < Q_1 < \dots < Q_{r_4} < Q_{r_4+1} = U_4 + 1.$$

The numbers L_0 , L_{r_1+1} , and so forth, are added. Here $L_0 = M_0 = N_0 = Q_0 = G_0 = 0$ corresponds to using the regular representation itself, hence no transfer. The upper bounds for e_j , say U_j , j = 1, 2, 3, are given such that the representation (4) is regular. For e_4 we note that the largest $s_4^{(i)}$ is < h, and we put $U_4 = h$. Then we sort all the gains G_i ,

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(\eta)} > 0,$$

without registering possible equalities. This gives a sequence of quintuples

$$(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)}), \quad i = 1, 2, \dots, \eta,$$

to which we add (0, 0, 0, 0, 0), corresponding to no transfer. Assume that p, q, r and s are given such that

(15)
$$0 \le p \le r_1, \quad 0 \le q \le r_2, \quad 0 \le r \le r_3, \quad 0 \le s \le r_4.$$

Let e_1, e_2, e_3 and e_4 be given such that

(16)
$$L_p \le e_1 \le L_{p+1} - 1, \ M_q \le e_2 \le M_{q+1} - 1,$$

(17)
$$N_r \le e_3 \le N_{r+1} - 1, \ Q_s \le e_4 \le Q_{s+1} - 1.$$

We then scan the quintuples $(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)}), i = 1, 2, ..., \eta + 1$, and register the first time (largest gain) such that

$$L^{(i)} < L_{p+1}, \quad M^{(i)} < M_{q+1}, \quad N^{(i)} < N_{r+1}, \quad Q^{(i)} < Q_{s+1}.$$

The corresponding gain $G^{(i)} = G_{pqrs}$ is then the largest one which can be used in the case (16), (17). We must always have

$$e_1 + e_2 + e_3 + e_4 - G^{(i)} \le h.$$

In the "worst" case $e_1 = L_{p+1} - 1$, $e_2 = M_{q+1} - 1$, $e_3 = N_{r+1} - 1$, and the corresponding integer n has the regular representation

(18)
$$n = L_{p+1} - 1 + (M_{q+1} - 1)a_2 + (N_{r+1} - 1)a_3 + e'_4a_4,$$

with

(19)
$$L_{p+1} - 1 + M_{q+1} - 1 + N_{r+1} - 1 + e'_4 - G_{pqrs} \le h.$$

If $Q_{s+1} < U_4 + 1$, then $e'_4 = Q_{s+1} - 1$, and we must have

(20) $L_{p+1} - 1 + M_{q+1} - 1 + N_{r+1} - 1 + Q_{s+1} - 1 - G_{pqrs} \le h.$

The inequality defines a lower bound for h. If $Q_{s+1} = U_4 + 1$, then

(21)
$$e'_{4} = h - (L_{p+1} - 1 + M_{q+1} - 1 + N_{r+1} - 1 - G_{pqrs})$$

gives an upper bound for e_4 .

Each subset with $Q_{s+1} = U_4 + 1$ determines a value e'_4 such that all values $n = \sum e_j a_j$ satisfying (16), (17) have *h*-representations, and the value

(22)
$$n' = L_{p+1} - 1 + (M_{q+1} - 1)a_2 + (N_{r+1} - 1)a_3 + (e'_4 + 1)a_4$$

does not, but all other values

$$m^{'} = e_1 + e_2 a_2 + e_3 a_3 + (e_4^{'} + 1) a_4 + e_4^{'}$$

where e_1 , e_2 , e_3 satisfy (16), (17), do. Let

(23)
$$m = \min_{pqr} \{n'\};$$

then m has no h-representation, but all values less than m do, so the h-range $n(h, A_k) = m - 1$.

If $Q_{s+1} < U_4 + 1$, then $e'_4 = Q_{s+1} - 1 \ge 0$, and the inequality (20) defines a lower bound for h. Then h_0 is the minimal value of h that satisfies the inequalities (20) in all the cases with $e'_4 = Q_{s+1} - 1 = 0$. Let h_3 be the minimal value of h such that all the inequalities (20) are satisfied. Then for $h \ge h_3$ the h-range $n(h, A_4) \ge \max_i \{s_4^{(i)}\}a_4$, with the index running over all used transfers. From Lemma 1, the basis has the same h-range formula for all $h \ge h_3$. If $h_3 > h_0$ and $h_0 \le h \le h_3$, then the h-range is m - 1, (23).

For given $h \ge h_3$, the upper bound on e'_4 is

(24)
$$h - \max(L_{p+1} - 1 + M_{q+1} - 1 + N_{r+1} - 1 - G_{pqrs}),$$

where the maximum is taken over all the cases with $Q_{s+1} = U_4 + 1$, see (21). One may also use e'_4 to determine the prefactor of the basis; see [12] and Selmer [19].

Let $h \ge h_3$. The integers $n \in [0, ha_4]$ given in regular representation with an *h*-representation may be split into disjoint sets. For each set of integers we perform the procedure above. Let N be the smallest one of the integers m - 1, (23) with $Q_{s+1} = U_4 + 1$. Since we have used the possible transfer with the largest gain for each integer, N is the *h*-range of the basis.

The algorithm may be easily modified for a parameter basis $A_4(h)$ where γ , β , G, L, M, N and U are either linear expressions in h of the form ch + d or constants. This means that the comparisons may have to be done in two steps. Let $L_1 = c_1h + d_1$ and $L_2 = c_2h + d_2$. Then if $c_1 \neq c_2$ we are finished with one comparison. If $c_1 = c_2$ we have to compare d_1 with d_2 also.

We have described a constructive procedure to determine the *h*-range of a given explicit basis A_4 or a parameter basis $A_4(h)$ with a given set of transfers.

In [12] the author used the algorithm for k = 4 to determine the *h*-range formulas of the parameter basis that by optimization gave the asymptotic prefactor c_4 . Also it contributes to the characterization of the *h*-range formulas.

The algorithm requires that all the subsets (16), (17) must be considered in turn. A slightly different approach might reduce the number of subsets which need to be considered.

330

First, choose $Q_s \leq e_4 \leq Q_{s+1} - 1$. Now extract from the set of quintuples $(G^{(i)}, L^{(i)}, M^{(i)}, N^{(i)}, Q^{(i)})$ just those which satisfy $Q^{(i)} < Q_{s+1}$. We do not need to consider other transfers, because they are not possible for these values of e_4 . This set of quintuples defines new subdivisions for e_3 , and there will in general be fewer subdivisions than before. Next, we choose one of these subdivisions $N_r \leq e_3 \leq N_{r+1} - 1$, and repeat the process. Finally, when we have chosen subdivisions for e_4 , e_3 , e_2 and e_1 we will have a set of quintuples that describes precisely those transfers which are possible for the subset, and so we have only to choose the one with highest gain.

Properties of the h**-range formula.** Since Hofmeister [5] gave explicit formulas for the regular h-range of a basis, we assume that at least one transfer must be applied.

Theorem 1. Let $h, k \ge 3$, and let the admissible basis A_k be given in normal form (6). Let $\sum_{i=1}^{k} \epsilon_i a_i = n(h, A_k)$, $\epsilon_i \in \mathbb{N} \cup \{0\}$, be the regular representation of the *h*-range. Let us assume $\epsilon_1 < a_2 - 2$. Then

$$\epsilon_1 = \sum_{i=3}^k s_i \beta_1^{(i)} - s_2 \gamma_1 - 2,$$

where (s_2, \ldots, s_k) is one of the transfers used for A_k . For this transfer to be possible for an integer with regular representation $\sum e_j a_j$, it is at least necessary that

$$e_1\geq \sum_{i=3}^k s_ieta_1^{(i)}-s_2\gamma_1.$$

Proof. Let $n(h, A_k) = N$. The integer N + 1 has no *h*-representation. Consider the integer $N + 2 = \sum \epsilon_i a_i + 2$. Since the basis is admissible, we have one coefficient $\epsilon_j \geq 1, j \in [2, k]$. Then the integer

$$M = N + 2 - a_j = \epsilon_1 + 2 + \sum_{i=1}^{j-1} \epsilon_i a_i + (\epsilon_j - 1)a_j + \sum_{j+1}^k \epsilon_i a_i = \sum_{i=1}^k z'_i a_i,$$

and the representation is regular with $\sum_{1}^{k} z'_{i} > h$. M has an h-representation

$$M = \sum_{1}^{k} z_i a_i$$
 with $\sum_{1}^{k} z_i \leq h$, since $M \leq N$.

If (s_2, \ldots, s_k) is the transfer between the two representations for M, we have at least one $s_j > 0, j \in [2, k]$. The *h*-representation of M can not be used for M - 1, since $N+1 = M-1+a_j$ would then have an *h*-representation. Hence the representation of M must have $z_1 = 0$, and thus from (7) (with e_j replaced by z'_j)

$$0 = z_1^{'} - 0 + s_2 \gamma_1 - \sum_3^k s_i \beta_1^{(i)} = \epsilon_1 + 2 + s_2 \gamma_1 - \sum_3^k s_i \beta_1^{(i)}.$$

From the h-range algorithm and Theorem 1 we have

Theorem 2. Let k = 4, $h \ge 3$, and let the admissible basis A_4 be given in normal form (6) with $\gamma_2 \ge 3$, $\beta_2^{(4)} \ge 1$ and $2a_2 > \beta_1^{(3)} + \beta_1^{(4)} > a_2$. Let the used transfers

of the basis be $T^{(j)} = (s_2^{(j)}, s_3^{(j)}, s_4^{(j)}), \ j = 1, ..., \eta$. Let the regular representation of the h-range of the basis be

$$n = \epsilon_1 + \epsilon_2 a_2 + \ldots + \epsilon_4 a_4$$

(25) Then

$$\begin{aligned} \epsilon_1 &= \left\{ \begin{array}{l} \sum_{i=3}^4 s_i^{(j_1)} \beta_1^{(i)} - s_2^{(j_1)} \gamma_1 - 2, \\ \gamma_1 - 2, \end{array} \right. \\ \epsilon_2 &= \left\{ \begin{array}{l} s_4^{(j_2)} \beta_2^{(4)} - s_3^{(j_2)} \gamma_2 + s_2 - 1, \\ \gamma_2 - \beta_2^{(4)} - 2 - \delta, \\ \gamma_2 - 1 - \delta, \end{array} \right. \\ \epsilon_3 &= \left\{ \begin{array}{l} s_3^{(j_3)} - s_4^{(j_3)} \gamma_3 - 1, \\ \gamma_3 - 1 - \delta, \end{array} \right. \\ \epsilon_4 &= h - \sum_{i=1}^3 \epsilon_i + g, \end{aligned} \end{aligned}$$

where g is the gain of the possible transfer of n with the largest gain. For at most one value of $l \in \{2,3\}$ we have $\epsilon_l = \gamma_l - 1$. Here $\delta = 0$ or $\delta = 1$, $j_1, j_2, j_3 \in \{1, 2, ..., \eta\}$.

Proof. From the *h*-range algorithm we have that the values of ϵ_l are given by either the conditions for the transfers to be possible or the conditions for *n* to be in regular representation, [12]. In the algorithm we may have $p = r_1$, giving $L_{r_1+1} = \gamma_1$ and, from (23), $\epsilon_1 = \gamma_1 - 2$. If $p < r_1$ we find ϵ_1 from the algorithm or Theorem 1. The possible transfer of *n* with the largest gain and with the conditions on the e_j such that we can have $e_j \leq \epsilon_j$, j = 1, 2, 3, gives the gain $g \geq 0$. If no possible transfer for *n* exists, then g = 0.

Conjecture 1. For $k \geq 3$, there exist an $h_s \in \mathbf{N}$, a set of transfers $T^{(j)} = (s_2^{(j)}, \ldots, s_k^{(j)}), \ j = 1, \ldots, \eta$, and a $\sigma \in [1, \eta]$ such that for $h > h_s$ we have the extremal parameter basis $A_k^*(h)$ given in normal form (6) uses the transfers $T^{(j)}, \ j = 1, \ldots, \eta$. If the regular representation of the h-range of the basis is

$$n = \epsilon_1 + \epsilon_2 a_2 + \ldots + \epsilon_k a_k,$$

then

$$\epsilon_1 = \sum_{i=3}^k s_i^{(\sigma)} \beta_1^{(i)} - s_2^{(\sigma)} \gamma_1 - 2$$
$$\epsilon_l = \gamma_l - 2,$$

for l = 2, 3, ..., k - 1, and

$$\epsilon_k = h - \sum_{i=1}^{k-1} \epsilon_i + g,$$

where g is the gain of the possible transfer of n with the largest gain.

Also from a numerical point of view the conjecture is quite interesting, to find a upper bound for a given basis.

For k = 3, h > 22, the (0,1)-transfer with the condition $e_1 \ge \beta_1^{(3)} = \beta$, see (7), is the only transfer used for the A_3^* basis, Hofmeister [4]. But with $\epsilon_1 = \beta - 2$, we cannot apply it on n(h,3). Hence, the extremal *h*-range n(h,3) is a minimal regular *h*-representation. The extremal bases for k = 3 and $h \ge 6$ have $\epsilon_2 = \gamma_2 - 2$.

332

All the known extremal bases for k = 4 are determined numerically and have for $h \ge 43$ and 23 other values, $6 \le h < 42$, $\epsilon_2 = \gamma_2 - 2$ and $\epsilon_3 = \gamma_3 - 2$. See Challis [2], Mossige [10] and [11].

3. The conjecture in the case k = 4

Let k = 4, $h = 12\alpha t + i$, $i \in [0, 11]$, $\alpha \ge 1$, $\alpha \in \mathbf{Q}$, $t \in \mathbf{N}$. The parameter basis $A_M = A_M(h, b, p)$ we are going to use in normal form is $(a_1 = 1)$

$$a_{2} = 9\alpha t + b_{1}t + p_{1},$$

$$(26) \quad a_{3} = (3\alpha t + b_{3}t + p_{3})a_{2} - (5\alpha t + b_{2}t + p_{2}),$$

$$a_{4} = (2\alpha t + b_{6}t + p_{6})a_{3} - (\alpha t + b_{5}t + p_{5})a_{2} - (6\alpha t + b_{4}t + p_{4}),$$

where $b_l, p_l \in \mathbf{Z}$ (to be chosen suitablely) and where we put $b = (b_1, b_2, \ldots, b_6)$ and $p = (p_1, p_2, \ldots, p_6)$. We shall also consider the basis $A_S = A_S(h, b, p)$, given by replacing the coefficient 5 in (26) by 7 and the coefficient 6 by 4. Let $A_M = A_M(h, b)$ be the basis (26) with $p = (0, \ldots, 0)$, and similarly, $A_S = A_S(h, b)$.

Since 1971, the "record" prefactor $\varphi = 2$ was held by the parameter basis $A_M(h, b)$ discovered by Hofmeister and Schell [5] with

(27)
$$b = (0, 0, \dots, 0), \ \alpha = 1$$

and the transfers that give a positive gain

(28)
$$T_1 = (0,1,0), \quad T_2 = (0,0,1), \quad T_3 = (1,1,2), \quad T_4 = (1,0,2).$$

In 1988 Braunschädel [1] gave the basis A_S with (27), using the transfers

(29)
$$T_1, T_2, T_3, T'_4 = (0, 0, 2).$$

He examined (on a computer) all bases $A_4(h)$ of the form,

(30)
$$h = Ht; a_2 = c_1t, a_3 = c_2ta_2 - c_3t, a_4 = c_4ta_3 - c_5ta_2 - c_6t_3$$

with $c_l \in \mathbf{N}$, allowing only (s_2, s_3, s_4) -transfers with $s_2, s_3, s_4 \leq 2$. He then always found $\varphi \leq 2$, and $\varphi = 2$ only for the bases $A_M(h, b)$ and $A_S(h, b)$ with (27) (see also Selmer [19]).

The author's idea was to make small variations of the leading coefficients of the elements of the basis (26), by varying b around the six-tuple $(0, \ldots, 0)$, to see whether an increase of the prefactor is possible. Let

(31)
$$b_M = (15, 1, -15, 6, -13, -20).$$

In 1985 he found a basis $A_M(h, b_M)$ with $\varphi > 2$ (see [12]):

To get the prefactor φ of this basis we consider the polynomial

$$g(\gamma) = -32\gamma - 168\gamma^2 - 22\gamma^3 + 3\gamma^4$$

and determine the solution γ_1 of $g'(\gamma_1) = 0$, where

$$\gamma_1 = \frac{11}{6} + \frac{1}{3}\sqrt{457}\cos\frac{\xi + 4\pi}{3}, \ \cos\xi = \frac{7163}{\sqrt{457^3}}, \ \text{with} \ 0 < \xi < \pi/2,$$

giving $\gamma_1 = -0.09712372...$

With this γ_1 we put $\alpha_1 = -20/\gamma_1$ and

(32)
$$\sigma = 2 + 3^{-1} 2^{-6} g(\gamma_1) = 2.0080397...$$

For given $\varepsilon > 0$ we can choose t so large that for $h = 12\lfloor \alpha_1 t \rfloor$ the basis $A_M(h, b_M)$ has the prefactor

$$\varphi > \sigma - \varepsilon$$
.

In fact, here σ is a *cubic irrationality*, and can only be *approximated* by "rational" bases (26). We obtain a very good approximation if we put $\alpha = 206$, that is, h = 2472t, giving σ of (32) with all seven decimals correct. As usual, $\lfloor x \rfloor$ denotes the largest integer $\leq x \in \mathbf{R}$.

In [11] we developed formulas for the possible *h*-ranges of the parameter bases $A_M(h, b, p)$, and based the optimization on the determination of the local *h*-range $n(h, A_M)$. In addition to the transfers (28), we discovered that it was possible to use

(33)
$$T_5 = (1, 2, 1), \quad T_6 = (1, 0, 3).$$

In spite of the very small improvement on $\varphi = 2$, this result gave quite a new situation. Let

(34)
$$b_S = (15, -1, -15, 2, -13, -20).$$

In 1988 Selmer [19] showed that also the basis $A_S(h, b_S)$ has the prefactor (32). In [13] we show that my cited result (31), (32) for the basis $A_M(h, b_M)$ is valid also for the basis $A_S(h, b_S)$ with b_M replaced by b_S . Selmer [18] calls the two bases an *associate* pair of bases.

Computational results. When we apply our *h*-range algorithm to the parameter bases A_M , (26) and A_S , it gives for each basis the sufficient inequalities that express the conditions that all the integers $n \in [1, n(h, A)]$ have an *h*-representation and it gives all the *h*-range formula candidates. By extensive computations for $h \leq 620000$ we came to two constructions of two bases. For details see [13].

Construction 1. Given $h = 12\alpha t + i \ge 1236$, where $\alpha \in \mathbf{Q}$, $t \in \mathbf{N}$ and $0 \le i \le 11$. Let $b_M = (15, 1, -15, 6, -13, -20)$. Let $P_i = (p_1, p_2, \dots, p_6)$ and r be given by Table 1. Let $\beta = \alpha t = \lfloor h/12 \rfloor$, $i = h - \lfloor h/12 \rfloor$ and q = r + i. The basis A(t) has the elements $(a_1 = 1)$

$$\begin{aligned} a_2 &= & 9\beta + 15t + p_1, \\ a_3 &= & (3\beta - 15t + p_3)a_2 - (5\beta + t + p_2), \\ a_4 &= & (2\beta - 20t + p_6)a_3 - (\beta - 13t + p_5)a_2, -(6\beta + 6t + p_4), \end{aligned}$$

and h-range formula

$$n(t) = (3\beta + 45t + q + 1)a_4 + (2\beta - 20t + p_6 - 2)a_3 + (3\beta - 15t + p_3 - 2)a_2 + 5\beta + t + p_2 - 2.$$

Let $j = \lfloor \beta / \alpha_1 \rfloor$, where α_1 is given in the cited result (31), (32). If i = 0 then put $j = \lfloor \beta / \alpha_1 \rfloor + 1$. If n(j+1) > n(j) then t = j+1, else t = j.

Then the basis $A_M^* = A_M(h, b_M, P_i) = A(t)$ has h-range

$$n(h, A_M^*) = n(t).$$

For *i* even, $h - h_0 = 1$. For *i* odd, $h - h_0 = 0$.

Construction 2. Given $h = 12\alpha t + i \ge 1236$, where $\alpha \in \mathbf{Q}$, $t \in \mathbf{N}$ and $0 \le i \le 11$. Let $b_S = (15, -1, -15, 2, -13, -20)$. Let $P_i = (p_1, p_2, \dots, p_6)$ and r be given by

THE POSTAGE STAMP PROBLEM

TABLE 1

i	p_1	p_2	p_3	p_4	p_5	p_6	r
0	-8	0			7	13	-25
1,2	-4	1	8	-1	5	10	-19
3,4	0				3	7	-13
	4		4		1	4	-7
7,8	8	4	2	5	-1	1	-1
9,10	12	5	0	7	-3	-2	5
11	16	6	-2	9	-5	-5	11

	TA	BLE	2
--	----	-----	---

i	p_1	p_2	p_3	p_4	p_5	p_6	r
0	-12	1	14	-1	11	19	-38
1,2	-8	2	12	0	9	16	-32
3,4	-4	3	10			13	-26
5,6	0		8	2	5	10	-20
7,8	4	5	6	3	3	7	-14
9,10	8	6	4	4	1	4	-8
11	12	7	2	5	-1	1	-2

Table 2. Let $\beta = \alpha t = \lfloor h/12 \rfloor$, $i = h - \lfloor h/12 \rfloor$ and q = r + i. The basis A(t) has the elements $(a_1 = 1)$

$$\begin{array}{rcl} a_2 &=& 9\beta+15t+p_1,\\ a_3 &=& (3\beta-15t+p_3)a_2-(7\beta-t+p_2),\\ a_4 &=& (2\beta-20t+p_6)a_3-(\beta-13t+p_5)a_2,-(4\beta+2t+p_4), \end{array}$$

and h-range formula

$$\begin{array}{ll} n(t) &=& (3\beta+45t+q+1)a_4+(2\beta-20t+p_6-2)a_3\\ &+(3\beta-15t+p_3-2)a_2+4\beta+2t+p_4-2. \end{array}$$

Let $j = \lfloor \beta / \alpha_1 \rfloor$, where α_1 is given in the cited result (31), (32). If $i \leq 4$, then put $j = \lfloor \beta / \alpha_1 \rfloor + 1$. If n(j+1) > n(j), then t = j+1, else t = j.

Then the basis $A_S^* = A_S(h, b_S, P_i) = A(t)$ has *h*-range

$$n(h, A_S^*) = n(t).$$

For *i* even, $h - h_0 = 1$. For *i* odd, $h - h_0 = 0$.

Two parameter bases $A^{(1)}(h)$ and $A^{(2)}(h)$ is said to be asymptotically equal if $a_i^{(1)}/a_i^{(2)} \to 1$ when $h \to \infty$ for $2 \le j \le 4$.

In an unpublished work from 1991, Kirfel and the author have shown the following result. For $h \to \infty$, all the bases A = A(h) with prefactor $\varphi > 2.008$ are either asymptotically equal to $A_M(h, b_M)$ or equal to $A_S(h, b_S)$. The sets b_M and b_S are given in (31) and (34) respectively. In [12] it is shown that such bases exist.

Let $\mathcal{A}_M(h, b_S)$ denote the class of all bases A = A(h) that are asymptotically equal to $A_M(h, b_M)$, and let $\mathcal{A}_S(h, b_S)$ be the similar class for $A_S(h, b_S)$.

We now ask for the best choice of the basis A = A(h) in the class $\mathcal{A}_M(h, b_M)$ and the best choice of the basis in $\mathcal{A}_S(h, b_S)$.

Extensive computations for $h \leq 620000$ give the following results.

Result A. For 9793 $\leq h \leq 620000$, $A_M^* = A_M(h)$ in the class $\mathcal{A}_M(h, b_M)$ is the basis with the largest h-range.

Result B. For $10653 \le h \le 620000$, $A_S^* = A_S(h)$ in the class $\mathcal{A}_S(h, b_S)$ is the basis with the largest h-range.

Result C. For $11385 \le h \le 620000$, A_M^* has larger h-range than A_S^* .

For both the bases A_M^* and A_S^* the *h*-range formulas are of the type stated in Conjecture 1.

Conjecture 2. For $h \ge 11385$, $A_M^* = A_M(h)$ is the extremal basis.

For h < 11385 we may get better bases when we replace the set b_M or b_S by other sets b and suitable sets p.

Using a result of Selmer [18], we prove in [13] that if $b = (b_1, \ldots, b_6)$ and

$$b^{'} = (b_1, b_1 - b_2 + b_3, b_3, b_1 - b_4 - b_5 + b_6, b_5, b_6),$$

then for each basis $A_M(h, b)$ with prefactor φ there is a basis $A_S(h, b')$ with the same prefactor, and vice versa. If b = b', then

$$2b_2 = b_1 + b_3, \qquad 2b_4 = b_1 - b_5 + b_6.$$

For further details see [13].

References

- R. Braunschädel, Zum Reichweitenproblem, Diplomarbeit, Math. Inst., Joh. Gutenberg-Univ., Mainz 1988.
- [2] M.F.Challis, Two new techniques for computing extremal h-bases A_k , Computer J. 36 (1993), 117-126.
- [3] G. Hofmeister, Über eine Menge von Abschnittbasen, J. Reine Angew. Math. 213 (1963) 43-57. MR 31:149
- [4] G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. Reine Angew. Math. 232 (1968) 77-101. MR 38:1068
- [5] G. Hofmeister, Zum Reichweitenproblem, Mainzer Seminarberichte in Additiven Zahlentheorie, 1 (1983), 30-52.
- [6] G. Hofmeister, C. Kirfel and H. Kolsdorf, Extremale Reichweiten, Inst. Rep. No 60, Dept. of pure Math., Univ. of Bergen, 1991.
- [7] C. Kirfel, On Extremal Bases for the *h*-range Problem, I, II, Inst. Rep. Nos. 53, 55, Dept. of pure Math., Univ. of Bergen, 1989, 1990.
- [8] C. Kirfel, Extremale asymptotische Reichweitenbasen, Acta Arith. (1992) 279-288. MR 92m:11012
- [9] W.F. Lunnon, A Postage Stamp Problem, Compt. J. 12 (1969), 377-380. MR 40:6745
- [10] S. Mossige, Algorithms for computing the h-range of the Postage Stamp Problem, Math. Comp., 36 (1981), 575-582. MR 82e:11095
- [11] S. Mossige, On the extremal *h*-range of the Postage Stamp Problem with four Stamp denominations, Dissertation, Inst. Rep. No. 41, Dept. of pure Math., Univ. of Bergen, 1986.
- [12] S. Mossige, On extremal h-bases A₄, Math. Scand. 61 (1987), 5-16. MR 89e:11008
- [13] S. Mossige, The Postage Stamp Problem. An algorithm to determine the *h*-range. On the *h*-range formula. On the extremal basis problem for k = 4, Inst. Rep. No. xx, Dept. of pure Math., Univ. of Bergen, 1995, 1-74.
- [14] A. Mrose, Die Bestimmung der extremalen regulären Abschnittbasen mit Hilfe einer Klasse von Kettenbruchdeterminanten, Dissertation, Freie Universität Berlin, 1969.
- [15] Ø. Rødseth, An upper bound for the h-range of the Postage Stamp Problem, Acta Arith. 54 (1990), 301-306. MR 91h:11013

- [16] J. Riddell and C. Chan, Some extremal 2-bases, Math. Comp. 32(1978), 630-634. MR 57:16244
- [17] E.S. Selmer, The Local Postage Stamp Problem, I-III, Inst. Rep. Nos. 42, 44, 47, Dept. of Pure Math., Univ. of Bergen, 1986, 1990.
- [18] E.S. Selmer, Associate Bases in the Postage Stamp Problem, J. Number Theory, 42, 3,(1992), 320-336. MR 94b:11012
- [19] E.S. Selmer, Asymptotic h-ranges and dual bases, Inst. Rep. No. 56, Dept. of Pure Math., Univ. of Bergen, 1990.
- [20] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, I, J. Reine Angew. Math. 194 (1955), 40-65. MR 17:713a

University of Bergen, Department of Mathematics, Joh. Brunsgt. 12, N-5008 Bergen, Norway

E-mail address: svein.mossige@mi.uib.no